Plano de Ensino Campus: VII – Timóteo

DISCIPLINA: Pirometalurgia CÓDIGO: G07PIRO0.01

Validade:

Carga Horária: Total: 30 Horas Semanal: 02 aulas Créditos: 02

Modalidade: Teórica

Classificação do Conteúdo pelas DCN: Específica

Ementa:

Termodinâmica pirometalúrgica. Processos de ustulação e processo de calcinação. Redução de óxidos metálicos. Produção de metais voláteis. Processos de cloração. Produção e metais voláteis por fusão redutora e conversão Obtenção de metais por eletrofusão.

Curso	Período	Eixo	Natureza
Engenharia Metalúrgica	7°	Metalurgia Extrativa	Obrigatória

Departamento: Departamento de Metalurgia e Química (DMQTIM).

INTERDISCIPLINARIEDADES

Pré-requisitos	
Termodinâmica Metalúrgica	
Co-requisitos	
Transferência de Calor	
Disciplinas para as quais é pré-requisito / co-requisito	
Metalurgia Extrativa Dos Não-Ferrosos	

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino Campus: VII – Timóteo

Obj	Objetivos:	
1	Entender e descrever os conceitos básicos da pirometalurgia	
2	Conhecer o objetivo de cada etapa dos processos pirometalúrgicos	
3	Compreender os mecanismos de funcionamento dos equipamentos e as suas variáveis de processo.	
4	Interpretar e montar fluxogramas de processo.	
5	Avaliar os impactos ambientais implícitos aos processos pirometalúrgicos	

Unidades de ensino		Carga horária
		Horas-aula
1	Aspectos introdutórios: metalurgia extrativa, operações unitárias, processos pirometalúrgicos	03 1,5
2	Funções de energia (G, H e S); Reações gasosas univariantes; Diagrama de Ellingham para óxidos (Leitura de informações gerais).	03 1,5
3	Ustulação fundamentação e aplicação; Diagrama log(pSO2) em função de log(pO2); Diagrama de Ellingham para sulfetos.	04 2
4	Calcinação fundamentação e aplicação; Construção dos diagramas log(pCO2) em função de 1/T; Calcinação seletiva de diferentes carbonatos; Aspectos cinéticos e fenomenológicos que interferem na calcinação do CaCO3 e MgCO3; Influência das condições de calcinação na produção de óxidos reativos e refratários; Cinética e fornos de calcinação.	06 3
5	Introdução e propriedades dos cloretos metálicos; Aplicação e fundamentação; Diagrama de Ellingham para cloretos.	04 2
6	Diferentes processos para a produção de zinco metálico; O processo RLE (Vantagens, operações, reações, equipamentos, variáveis de processo, remoção de contaminantes e aspectos gerais da eletrólise).	06 3
7	Produção de cobre a partir de minérios oxidados (HL-SX-EW); Produção de cobre a partir de minérios sulfetados (Fusão a mate, Conversão, Refino ao fogo e eletrorrefino);	04 2

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino Campus: VII – Timóteo

Principais diferenças entre a fusão à mate para cobre e níquel.	
Total	30

Bibliografia Básica		
1	BROCCHI, E. A. e MOURA, F. J. Desenvolvimentos em Pirometalurgia. Publicação São Paulo : ABM, 259p, 1986.	
2	HABASHI, F. Principles of Extractive Metallurgy, Volume 3. Pyrometallurgy. Gordon & Breach, New York – London – Paris, 479p, 1992.	
3	PARKER, R. H. Pirometalurgia. Publicação Ouro Preto, Ed. da UFOP, 138p, 1974.	

Bibliografia Complementar		
1	DENNIS, W. H. Metallurgy of Non Ferrous Metals. Isaac Pitman & Sons, London, 393p, 1963.	
2	GILCHRIST, J. D. Extraction metallurgy. 3 ^a ed., Oxford: Pergamon Press, 456p, 1989.	
3	HABASHI, F. Metals from Ores. An Introduction to Extractive Metallurgy. Métallurgie Extractive Québec, Québec City, Canada, 472p, 2003.	
4	ROSENQVIST, T. Principles of Extractive Metallurgy. Tokyo, MacGraw-Hill Kogakusha, LTD., 506p, 2004.	
5	SCHLESINGER, M. E., KING, M. J., SOLE, K. C. e DAVENPORT, W. G. I. Extractive Metallurgy of Cooper. USA, Ed. Elsevier, 5° Ed., 441p, 2011.	