

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

CAMPUS: Timóteo	
DISCIPLINA : Ciência de Dados para Engenharia	CÓDIGO: G07CDEM0.01
Metalúrgica	

Início: Fevereiro/2024

Carga Horária: Total: 45 horas/aula Semanal: 3 horas/aula Créditos: 3

Natureza: Teórico-prática; Obrigatória.

Área de Formação - DCN: Profissionalizante

Competências/habilidades a serem desenvolvidas: C01, C03, C04.

Departamento que oferta a disciplina: Departamento de Metalurgia e Química

Ementa:

Introdução ao aprendizado de máquina: conceitos, processo de aprendizagem de máquina, aprendizado supervisionado e não supervisionado, tipos de problema (classificação, regressão, associação e agrupamento), ferramentas e frameworks; modelagem e preparação de dados para aprendizado de máquina, algoritmos de aprendizado supervisionado e não supervisionado; avaliação da qualidade dos modelos; aplicação de modelos na área metalúrgica.

Curso(s)	Período	Eixo	Obrigatória	Optativa
Engenharia Metalúrgica	10°	Matemática Aplicada e Computacional	X	

INTERDISCIPLINARIDADES

Prerrequisitos: Estatística Aplicada
Correquisitos: Não há.

Ob	Objetivos: A disciplina deverá possibilitar ao estudante		
1	Formular e conceber soluções desejáveis de engenharia, analisando e compreendendo os usuários dessas soluções e seu contexto.		
2	Analisar e compreender os fenômenos físicos e químicos por meio de modelos simbólicos, físicos e outros, verificados e validados por experimentação.		
3	Projetar algoritmos que mimetizem processos e calculem equações úteis para a engenharia.		
4	Julgar a eficácia de técnicas computacionais para oferecer respostas à engenharia.		
5	Analisar dados obtidos de processos e experimentos para reconhecer e comunicar padrões.		

Un	idades de ensino	Carga-horária Horas/aula
1	Introdução ao aprendizado de máquina / ferramentas e frameworks. Visualização de dados e gráficos.	9
2	Preparação de dados para aprendizado de máquina. Tipos de problemas - Modelos de classificação.	9
3	Tipos de problemas - Regressão. Estudo de caso - Modelos de classificação e regressão.	9
4	Tipos de problemas – Associação. Tipos de problemas – Agrupamento.	9

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

5	Total	15
5	Atividades práticas.	Q

Bib	Bibliografia Básica	
1	HELENE, Otaviano A. M.; VANIN, Vito R. Tratamento estatístico de dados em física experimental. 2. ed. 5.	
	reimpr. São Paulo: Blucher, 1981. E-book. Disponível em: https://plataforma.bvirtual.com.br. 117 p. ISBN 978-85-212-0006-2.	
2	GIOLO, Suely Ruiz. Introdução à análise de dados categóricos com aplicações. 1. ed. São Paulo: Blucher, 2017.	
	E-book. Disponível em: https://plataforma.bvirtual.com.br. 257 p. ISBN 9788521211884.	
3	TAN, P. N.; STEINBACH, M.; KUMAR, V. Introdução ao datamining: mineração de dados. Rio de Janeiro:	
	Ciencia Moderna, c2009. xxi, 900 p. ISBN 9788573937619.	

Bib	Bibliografia Complementar		
1	AMARAL, F. Introdução à ciência de dados. 1. ed. Rio de Janeiro: Alta Books, 2016. 320 p. 9788576089346.		
2	FORBELLONE, A. L.; EBERSPÄCHER, H. F. Lógica de programação : A construção de algoritmos e estruturas de dados com aplicações em Python. 4. ed. Porto Alegre: Bookman, 2022. 332 p. ISBN 9788582605721.		
3	SACOMANO, J. B. (ed) et al. Indústria 4.0 : Conceitos e Fundamentos. 1. ed. São Paulo: Blucher, 2018. 169 p. ISBN 9788521213703.		
4	MEDEIROS, L. F. de. Inteligência artificial aplicada : uma abordagem introdutória. 1. ed. Curitiba: Intersaberes, 2018. E-book. Disponível em: https://plataforma.bvirtual.com.br. 263 p. ISBN 9788559728002.		
5	RUSSELL, S. J.; NORVIG, P. Inteligência artificial . Rio de Janeiro: Elsevier, c2013. xxi, 988 p. ISBN 9788535237016.		
6	HAYKIN, S. Neural networks and learning machines . 3. ed. Nova Iorque: Prentice Hall, 2009. 906 p. ISBN 9780131471399.		

FOLHA DE ASSINATURAS

PLANO DE ENSINO Nº 1066/2024 - CEMTTM (11.51.26)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 08/04/2024 14:24)

JORGE LUIS COLETI

COORDENADOR

CEMTTM (11.51.26)

Matrícula: ###123#7

(Assinado digitalmente em 08/04/2024 10:18) LEONARDO LACERDA ALVES PROFESSOR ENS BASICO TECN TECNOLOGICO DECOMTM (11.63.11) Matrícula: ###653#3

Visualize o documento original em https://sig.cefetmg.br/documentos/ informando seu número: 1066, ano: 2024, tipo: PLANO DE ENSINO, data de emissão: 08/04/2024 e o código de verificação: fececf4139